
Building Footprint Regularization : From
Vectorization to Deep Learning

This manuscript (permalink) was automatically generated from kshitijrajsharma/building-regularization-

research@7d5dede on July 31, 2025.

Authors

Kshitij Raj Sharma  
 0000-0002-2123-3917 ·  kshitijrajsharma ·  @kshitijrajsharma@mastodon.social  

Department of Geoinformatics, Paris Lodron University, Salzburg, Austria

✉ — Correspondence possible via GitHub Issues

https://kshitijrajsharma.github.io/building-regularization-research/v/7d5dedeabc0de0fbbb04b72c725dc851416a88f8/
https://github.com/kshitijrajsharma/building-regularization-research/tree/7d5dedeabc0de0fbbb04b72c725dc851416a88f8
https://orcid.org/0000-0002-2123-3917
https://github.com/kshitijrajsharma
https://mastodon.social/@kshitijrajsharma
https://github.com/kshitijrajsharma/building-regularization-research/issues


Abstract

It often believed that many cartographic and Geographic Information System (GIS) applications
require building footprints in the form of clean vector polygons, rather than raw raster masks, to
facilitate direct use in maps and spatial analysis work�ows [1]. However, outputs from automated
methods, including those based on satellite imagery or LiDAR, often produce noisy or overly complex
polygons with an excessive number of vertices. OpenStreetMap (OSM), frequently used as a
reference, contains features that are not always naturally occurring and often re�ect a more human-
like interpretation, which is not the case when mapped automatically. Human mappers typically apply
cartographic judgment, favoring orthogonality, symmetry, and geometric simplicity while digitizing
buildings.

The primary objective of this study is to review the existing e�orts to generate building footprints that
tries to mimic human-cartographic quality. We focus on building footprint regularization, de�ned as
the process of converting rough or noisy outlines into clean vector shapes that adhere to expected
geometric constraints (e.g., straight edges, right angles). This process enhances both the visual and
analytical quality of building data. A common approach involves using deep learning to generate
building masks, followed by a postprocessing step to convert these masks into vector polygons.
However, many existing methods either lack generalization across di�erent geographies or fail to
enforce su�cient regularity [2].

This review traces the evolution of 2D building footprint regularization techniques from early rule-
based vectorization in the 1990s to recent deep learning models in the 2020s. The focus is speci�cally
on planimetric (2D) building outlines, excluding full 3D reconstruction and roof modeling. For each
generation of methods, we highlight core ideas, algorithms, and their suitability for integration into
GIS work�ows. We compare classical and deep learning-based methods in terms of accuracy,
�exibility, cartographic quality, and real-world applicability. Where relevant, we emphasize how these
methods can be used to improve or augment OpenStreetMap-style datasets, aligning outputs more
closely with the standards of human-made map features.

Introduction

Manual mapping by humans typically creates clean, regular building shapes with straight walls and
right angles. This is because human mappers naturally apply cartographic principles like symmetry
and geometric simplicity when drawing buildings. In contrast, automated methods often struggle to
produce such clean, map-ready outputs.The challenge of converting rough building outlines into clean
vector shapes is known as building footprint regularization. This process has evolved signi�cantly over
the past three decades, from simple geometric rules in the 1990s to sophisticated deep learning
models today. Early methods relied on mathematical techniques like the Hough Transform to detect
straight lines and enforce right angles. Modern approaches use neural networks to learn building
patterns directly from training data.

Our goal is to understand the strengths and limitations of di�erent approaches and provide guidance
for practitioners working on building extraction projects.The question remains: what makes a “good”
building footprint? Should it have perfect right angles, accurately represent the real building shape, or
simply look aesthetically pleasing on a map? Through this review, we explore how di�erent methods
address these competing requirements and discuss the ongoing challenges in automated building
footprint extraction.

Literature Review



Geometric and Heuristic Methods ( 1990s - 2000s )

Edge Detection and Line Fitting:

Early building extraction in the 1990s relied on low-level image processing and geometric heuristics.
For example, Huertas and Nevatia (1988) [3] developed a system to detect buildings in aerial images
by �nding rectangular clusters of edges (lines) and using shadow cues to distinguish buildings from
other structures . Building polygons often consist of jagged lines. Guercke and Sester [4] use Hough-
Transformation ( Mathematically formalized by Duda, R.O., & Hart, P.E.[5] ) to re�ne such polygons.

Those approach and similar ones could identify simple rectangular building footprints, but often
produced polygons with jagged (bearing in mind they don’t take into account the building shape itself
rather the outline), noisy outlines. To clean such outlines, researchers applied line simpli�cation
algorithms from cartography, notably the Ramer–Douglas–Peucker algorithm : to remove small zig-
zags and reduce vertex count while approximating the shape (which is still used to the date) [6/].

The Douglas–Peucker algorithm (originally from 1973) [7] became a common post-processing step to
“compress” or simplify building polygon geometry.

Figure 1:  A simple illustration of Douglas-Peucker algorithm

Overall, early methods were largely rule-based: edges and corners were detected via image �lters,
and building shapes were assembled by connecting these primitives under geometric constraints
de�ned by human experts.

Regularization via Hough Transform:

By the 2000s, more sophisticated heuristics were introduced to enforce regularity in building outlines.
A prominent tool was the Hough Transform for line detection. Hough transform is a feature extraction
method used in image analysis. Hough transform can be used to isolate features of any regular curve
like lines, circles, ellipses, etc. Hough transform in its simplest from can be used to detect straight
lines in an image.[8] For instance, Guercke and Sester [9] proposed a footprint simpli�cation method
that takes an initial digitized outline (which might be jagged) and uses a Hough Transform to identify
the dominant line orientations; close-to-collinear segments are merged and adjusted by least-squares
to align with those dominant directions [3].



Figure 2:  Initial hough transofrmation line segment explained by Guercke and Sester (2011)

The result is a cleaner, rectilinear footprint where spurious bends are straightened and most angles
are ~90° or 180° [2].The Hough transform was applied to grouping line segments into two
perpendicular families corresponding to a building’s principal directions . An intial graph of line
segments was constructed, pruned edges that lacked image contrast (assuming they were false
boundaries), and then closed cycles were detected in the graph to form building polygons [2].

This yielded neatly rectangular footprints for buildings aligned to the two main axes, although the
method was inherently limited to rectilinear structures. Tian and Reinartz (2013) [2] extended the idea
to allow two arbitrary dominant orientations (not necessarily parallel/perpendicular to the image
axes), enabling footprints with an oblique alignment (e.g. buildings rotated on the ground).

These Hough-based methods exemplify how prior knowledge of building shape (e.g. most buildings
have parallel opposite walls and right-angle corners) was hard-coded into algorithms well before
machine learning became common. The advantage was that the output polygons were regular by
design : straight lines, right or consistent angles; making them immediately usable for mapping.
However, the success of these methods depended on reliable low-level edge detection. In practice,
missing or spurious line segments could cause incomplete or incorrect polygons. Methods like Cui’s
required a clear dominance of two perpendicular directions; complex or curved buildings, or those
with more than two prevailing orientations, fell outside their scope. Hough transform is considered as
a computational complex in terms of algorithm itself & often require postprocessing techniques like
snapping/merging lines or form cycles to create valid polygons[8]

Figure 3:  A simple Hough transformation explaination

Model-Based Fitting and Constraints:

Beyond Hough transforms, researchers explored explicit shape �tting. Zebedin et al. (2008)[2]
introduced an approach to reconstruct building footprints by �rst detecting numerous line segments
and then �ltering and clustering these lines by orientation. Here initial lines are �ltered by forming a
histogram of orientation and then removing outliers. The �ltered line directions are used to
reconstruct the building with regular appearance. This approach is �exible, as it is not restricted to 90°
angles.

This �exibility to allow non-90° angles was a strength like the footprint could, in principle, follow a
building that isn’t perfectly orthogonal but it still assumed buildings have a limited set of principal
directions (which may not hold for very irregular architectures).

Other methods employed snakes/active contours and energy minimization to re�ne building shapes.
For example, an active contour model (snakes) was applied to building roof images, optimizing an



energy that favored straight edges and right-angle corners. While this improved initial detections, A
drawback of the proposed method is that the weighting functions favor right angles and therefore
only work for buildings with simple rectangular shapes.

Bastian et al. (2014) combined data-driven edge detection with a global regularization step: they used
an alpha shape algorithm to get an initial footprint from LiDAR point data, then a variant of Douglas–
Peucker that was formulated as an energy minimization focusing on polygon complexity (number of
vertices). The output was further processed in two modes one maximizing geometric accuracy,
another maximizing topological simplicity to balance detail vs. regularity[10].

Energy Formulation : ( Basically way to formulate errors on those lines detected ) 𝐸 = 𝛼𝐸𝑑𝑖𝑠𝑡 +
𝛽𝐸𝑎𝑛𝑔𝑙𝑒 + 𝛾𝐸𝑙𝑒𝑛𝑔𝑡ℎ

Figure 4:  Work�ow of building regularization using energy formulation by Albers (2016)

These model-�tting approaches introduced the idea of globally optimizing a footprint shape (e.g., via
dynamic programming or least-squares) to satisfy regularity constraints.

Strengths and Limitations:

Traditional methods were mostly computationally lightweight and interpretable. They often ran in a
couple of sequential steps (edge detection, line grouping, polygon formation) and could be tuned by
adjusting thresholds (for line length, angle tolerance, etc.) When assumptions held e.g., a building was
clearly rectangular and image data was clean ,these methods produced very clean footprints. For
instance, a study by Guercke and Sester [4] showed that applying Hough-based regularization
removed minor zig-zag artifacts and yielded impressively straight building edges.

However, these approaches struggled as building shapes grew more complex or data quality
worsened. Irregular or curved buildings (round towers, L- or T-shaped footprints, etc.) did not �t
neatly into a two-orientation assumption or a single rectangle model. Many algorithms were fragile:
failing to detect a single key edge could cause entire sides of a polygon to be missed. They were also
scenario-speci�c often tailored to isolated buildings with simple roofs and would require retuning for
di�erent environments or data sources. It is often said that while such classical methods work in
some cases, they are “not applicable to many complex building structures” and they rely heavily on
human-engineered features and parameters [3].



In summary, the pre-2010s state-of-the-art could produce “regular” building outlines under favorable
conditions, but lacked the robustness and generality needed for broad, automated mapping tasks.
These limitations set the stage for machine learning, which promised to learn building shape patterns
directly from data and reduce the need for ad hoc rules.

Figure 5:  A comparison of traditional regularization algorithms on a noisy polygon in terms of node reduction, shape
simpli�cation, and edge smoothness [11]

Learning-Based Methods (2010s)

By the mid-2010s, the rise of deep learning fundamentally changed how building footprints were
extracted. Instead of manually de�ning edges and shape rules, researchers began training
convolutional neural networks (CNNs) to recognize buildings and output them in raster or vector
form. The typical pipeline circa 2015–2017 was to use a semantic segmentation network (such as U-
Net or DeepLab) to produce a binary mask of building pixels, then apply a vectorization algorithm to
convert that mask into polygons [6].

This two-step approach : CNN segmentation followed by geometric post-processing was a direct
evolution of earlier work�ows, swapping out hand-coded image �lters for learned CNN features. For
example, Philipp et al. (2019) [3], mentioned that fully convolutional networks could outperform
traditional techniques in detecting building regions from aerial images.

Once a clean building mask was obtained, o�-the-shelf polygonization (e.g., marching squares to trace
outlines) and Douglas–Peucker simpli�cation would yield a polygon vector. A problem with this
approach is that semantic segmentation models are unable to delineate the boundaries between
objects of the same class. This means that a single polygon will be drawn around a group of buildings
that share walls, such as a block of rowhouses. To handle this case, the semantic segmentation model
can be replaced with an instance segmentation model such as Mask R-CNN. This model generates a
separate raster mask for each instance of a class that is detected [6]. Beyong which additional
smoothing or regularization was needed, and many practitioners continued to apply tolerance-based
simpli�cation or mild “squaring” adjustments to make the polygons map-ready.



Figure 6:  Semantic Segmentation to Instance Segmentation Aprooaches , source

Deep Structured Models (Active Contours)

A signi�cant development in bridging classical regularization and deep learning was the integration of
active contour models into neural networks. Zhang et al. (2018)[12] introduced Deep Structured Active
Contours (DSAC), a hybrid approach where a CNN learns to predict the parameters of an active
contour that locks onto building edges . In their framework, the network output is not a raster, but
rather coe�cients that de�ne the shape and tension of an active contour (snake) which then deforms
to �t the building boundary.

Gur et al. (2019) [13] extended this concept by iteratively updating a polygon outline in an end-to-end
trainable manner. Their pipeline starts with an approximate polygon (like a coarse outline of the
building) and uses a neural network to repeatedly adjust the vertices, analogous to how one would
iteratively relax an active contour. While e�ective, the polygons produced by Gur et al. were not
explicitly enforced to be rectilinear the focus was on aligning to image evidence, not necessarily
making right angles.

Hatamizadeh et al. (2020) [14] proposed a multi-building active contour model: a CNN �rst predicts
initial contours for many buildings in a scene, and then a learned energy function re�nes all of them
simultaneously. This allowed processing dense urban scenes with many buildings at once, something
earlier active-contour methods (which often assumed one building at a time) didn’t handle.
Hatamizadeh’s model was end-to-end (it directly outputs vector polygons from an image), but like its
predecessors, its regularization was implicit it preferred smooth, compact shapes but did not
guarantee, say, all angles = 90°.

https://element84.com/software-engineering/automated-building-footprint-extraction-part-3-model-architectures/


Figure 7:  Comparative visualization of the labeled image and the outputs of DSAC, DarNet, and our TDAC for the
Vaihingen (top) and Bing Huts (bottom) datasets. (a) Image labeled with (green) ground truth segmentation. (b) DSAC
output. (c) DarNet output. (d) TDAC output. (e) TDAC’s learned initialization map and parameter maps (f) and (g)

Source Code : DSAC , ACDRNet, DALS

Recurrent Vertex Prediction (Polygon RNNs) : PolyMapper

Instead of converting segmentation masks into polygons as a post-processing step, Recurrent Vertex
Prediction models approach polygon extraction as a sequence prediction problem. In this framework,
the model outputs a series of vertices one at a time, similar to writing out coordinate lists.

Polygon-RNN demonstrated that a recurrent neural network (RNN) could learn to draw object outlines
by sequentially predicting polygon vertices, using image features to guide the process at each step.

A notable extension of this idea is PolyMapper, which integrates convolutional and recurrent modules
in an end-to-end architecture. First, a CNN component (similar to Mask R-CNN) detects building
instances and predicts coarse masks along with boundary and corner probability maps. Next, the
most likely vertices from the corner map are selected and passed, together with image features, into
an LSTM-based recurrent module. This module outputs vertices in sequence to trace the building
outline, stopping when an end-of-sequence token is predicted, which signals the polygon should
close.

https://github.com/dmarcosg/DSAC
https://github.com/shirgur/ACDRNet
https://github.com/ahatamiz/dals


Figure 8:  A comparison of polygons generated by instance segmentation (left) and PolyMapper, which uses fewer
vertices and preserves right angles (right) , source

This approach has distinct advantages: the RNN can learn to skip over minor irregularities, resulting in
cleaner and simpler polygons with fewer vertices. It can also learn to favor structural regularities, such
as right angles, due to its exposure to training data. PolyMapper demonstrated that such models
produce more regular and human-like building footprints than traditional instance segmentation
pipelines.

However, this modeling approach brings complexity. The network must learn when to terminate the
sequence (when to stop adding vertexes), and the loss function must account for sequence prediction
dynamics. Early Polygon-RNN models also faced issues such as generating self-intersecting polygons
or incorrectly ordering vertices unless constraints were explicitly enforced.

Figure 9:  Overview of PolyMapper for Building and Roads : Source

By the end of the 2010s, two main deep learning approaches emerged for extracting building
footprints from imagery:

1. Segmentation-based methods focused on generating accurate masks of buildings and then used
advanced post-processing techniques such as learned active contours (“snakes”) to clean and
regularize the shapes.

2. Direct polygon prediction methods aimed to output building outlines directly as sequences of
vertices and edges, using models like recurrent neural networks (RNNs) or parameterized shape
representations.

These approaches marked a signi�cant improvement over older heuristic techniques. Convolutional
neural networks (CNNs) could generalize better across diverse geographies and imaging conditions.

https://element84.com/software-engineering/automated-building-footprint-extraction-part-3-model-architectures/#:~:text=A%20popular%2C%20yet%20naive%20approach,is%20applied%20to%20the%20polygons
https://element84.com/software-engineering/automated-building-footprint-extraction-part-3-model-architectures/#:~:text=A%20popular%2C%20yet%20naive%20approach,is%20applied%20to%20the%20polygons


For instance, a model trained on buildings in one city could often perform reasonably well in another,
whereas hand-tuned algorithms often failed when conditions changed.

Despite this progress, early deep learning models still had limitations. The building shapes they
produced were often almost clean but not perfectly geometric for example, a nearly straight wall
might still have a slight jitter in the predicted vertices. This lack of geometric precision posed
challenges for GIS applications that require clean vector shapes.

Source Code : NA

Modern Deep Learning Approaches (2020s)

Polygonal Building Segmentation by Frame Field Learning

In addition to direct polygon prediction, researchers also explored ways to inject geometric structure
into the deep learning process. One notable approach by Girard et al. (2021) [15] involved predicting
not only a segmentation mask for buildings, but also a frame �eld : a set of orthogonal vectors at each
pixel along the boundary indicating local edge directions.

A frame �eld acts like a directional map around a building’s edges: it shows which way walls run and
where corners should be. Using this directional information, the method �rst extracts a rough outline
from the mask and then snaps and re�nes it by aligning it with the frame �eld and detected corner
points. The post-processing pipeline includes multiple geometric steps such as skeletonization, corner
detection, and line simpli�cation each algorithmically de�ned rather than learned.

Figure 10:  Explaination of frame�eld : Source

This method is able to handle buildings that are touching and buildings with courtyards by explicitly
representing shared walls and generating polygons with holes. In addition, it runs about 10x faster
than PolyMapper at inference time. The downside of this method is that the polygon extraction
routine is complex and lacks the elegance of a model trained end-to-end.[6/]

In the last few years, deep learning models for building footprint regularization have reached new
levels of maturity. These models are characterized by end-to-end training (the network learns to
output a �nal polygon with minimal post-processing) and by the integration of architectural elements
that explicitly handle the polygon’s structure (such as graph neural networks, transformers, or
di�erentiable geometric algorithms). Below we highlight several state-of-the-art approaches, including
CNN/RNN hybrids, graph-based models, and transformer-based models, and discuss how they
improve upon prior methods.

https://github.com/Lydorn/Polygonization-by-Frame-Field-Learning?tab=readme-ov-file
https://github.com/Lydorn/Polygonization-by-Frame-Field-Learning


Source Code : GitHub

PolyWorld: End-to-End Polygon Extraction via CNN and GNN

PolyWorld [16] introduces a novel end-to-end deep learning architecture for extracting vector building
footprints directly from satellite imagery. Unlike earlier methods such as Polygon-RNN or PolyMapper,
which rely on sequential vertex prediction or post-processing of segmentation masks, PolyWorld
formulates the problem as a graph-based polygon matching task.

The pipeline involves three main stages:

1. Vertex Detection: A fully convolutional neural network outputs a vertex con�dence map from which
likely building corners are identi�ed. Each vertex is paired with a learned visual descriptor encoding
local image features.

2. Graph-Based Learning: Detected vertices are embedded in a fully connected graph. An attentional
Graph Neural Network (GNN) evaluates pairwise relationships between vertices to learn
“connection strengths” i.e., the likelihood that a pair of vertices should be connected by an edge.

3. Polygon Assembly via Di�erentiable Matching: The �nal polygon structure is determined by solving
a graph matching problem, formulated as an optimal cycle through the vertices. This is achieved
using a di�erentiable relaxation of the Hungarian algorithm (Sinkhorn algorithm), enabling
gradient-based learning.

Figure 11:  Explanation of how PolyWorld works: source

Despite having better performance than the frame �elds models on the CrowdAI dataset, PolyWold
does not have the ability to generate polygons with holes, or handle buildings with shared walls.
However, the authors o�er some ideas for how the model could be modi�ed to handle these cases.
The model and inference (but not the training) source code is open source, but has a restrictive
license that only permits its use for research.[6/]

https://github.com/Lydorn/Polygonization-by-Frame-Field-Learning
https://github.com/zorzi-s/PolyWorldPretrainedNetwork


Figure 12:  PolyWorld vs Frame Field Learning on CrowdAI test dataset : source

Figure 13:  Comaprison results oon CrowdAI test dataset by PolyWorld

Figure represents MS COCO results on the CrowdAI test dataset for all the building extraction and
polygonization experiments. The results of PolyWorld are calculated discarding the correction o�sets
(o�set o�), and re�ning the vertex positions (o�set on). FFL refers to the Frame Field Learning
method. The results are computed with and without frame �eld estimation. “mask” refers to the pure
segmentation produced by the model. “simple poly” refers to the Douglas–Peucker polygon
simpli�cation, and “ACM poly” refers to the Active Contour Model polygonization method [16]

Metric Meaning

AP
Average Precision (overall) – higher is better. General performance measure combining precision
and recall.

AP50 AP at IoU threshold 0.5 – more lenient match condition.

AP75 AP at IoU threshold 0.75 – stricter match condition.

APS / APM / APL AP for small, medium, and large buildings, respectively.

AR Average Recall (overall) – measures how well true objects are detected.

AR50 / AR75 AR at IoU thresholds 0.5 and 0.75.

ARS / ARM / ARL AR for small, medium, and large objects, respectively.

Source Code : GitHub

Improved version , Re:PolyWorld (2023)

https://element84.com/software-engineering/automated-building-footprint-extraction-part-3-model-architectures/#:~:text=A%20popular%2C%20yet%20naive%20approach,is%20applied%20to%20the%20polygons
https://github.com/zorzi-s/PolyWorldPretrainedNetwork


Following PolyWorld, Zorzi and Fraundorfer (2023)[17] introduced Re:PolyWorld, which is claimed to
be an improved multi-stage version of the framework . Re:PolyWorld added a second re�nement
stage where an initial polygon prediction is further optimized and made even more regular by an
additional GNN module.

Figure 14:  Re:PolyWorld Methodology

With these enhancements, Re:PolyWorld achieved new state-of-the-art scores on the CrowdAI dataset,
improving both the precision and the shape quality of footprints. For example, it improved the mean
intersection-over-union (IoU) and corner angle error metrics beyond what PolyWorld and a strong
frame-�eld baseline had achieved.

Figure 15:  Benchmark dataset of Re:PolyWorld

he continued success of these GNN-based methods demonstrates the value of treating polygon
formation as a graph problem (where deep networks ensure the graph forms nice cycles with desired
properties) rather than a pixel-by-pixel segmentation problem

Transformer-Based Sequence Models : Pix2Poly

Very recently, researchers have applied transformers the sequence modeling architecture behind
advances in NLP to polygon extraction. Pix2Poly [18] is an attention-based model that casts building
footprint delineation as a sequence prediction problem, handled entirely by a transformer encoder-
decoder.

The key idea is to avoid the multi-step detour that graph-based models take (e.g., detect vertices →
match into polygon). Instead, Pix2Poly’s transformer directly outputs an ordered list of vertex
coordinates in sequence, one vertex after another, in a single forward pass. To do this, it discretizes
continuous image coordinates into a sequence of tokens (similar to how one might tokenize words or
subwords in language) and trains the network to emit the token sequence corresponding to the
building outline.



Figure 16:  Overview of Pix2Poly Architecture

Because the transformer’s self-attention can attend globally to the image, Pix2Poly can, in theory,
capture the global shape of the building while placing each vertex. The authors highlight that it avoids
certain bottlenecks of earlier methods: for example, it doesn’t require a non-maxima suppression step
to select vertices (which was non-di�erentiable in many prior pipelines), nor does it need a separate
graph matching module, since the sequence inherently encodes the connectivity.

The entire model is di�erentiable end-to-end, making training more straightforward and cohesive. In
their experiments, Pix2Poly achieved state-of-the-art results not only for building footprints but also
for road network extraction, indicating the versatility of the approach.

Essentially, Pix2Poly represents the convergence of transformer-based detection with graph learning:
it uses a transformer as a “vertex sequence detector” and still incorporates an optimal matching
network (similar to PolyWorld’s assignment module) to ensure the predicted sequence forms closed
polygons. This model claimed to be less complex as compared to FLL , PolyWorld as it has total
parameter count of (31.9M) [18]



Figure 17:  Example of Pix2poly output

Source Code : Github

Other Noticable Advances

Alongside the above, there have been other notable modern approaches. PolyBuilding (2022) [1]
introduced a similar concept of a “polygon transformer” that directly predicts vector representations
of buildings. It emphasizes fully end-to-end training and shows that a transformer can outperform
CNN+RNN hybrids on benchmark aerial image datasets.

Generative models have also been explored: for instance, RegGAN (2022) [19] used a generative
adversarial network to re�ne building masks such that their boundaries look more like real building
shapes. In RegGAN, a generator CNN outputs a building mask and a discriminator network critiques it,
especially focusing on boundary regularity. This adversarial training leads to output masks with
sharper, straighter edges than a standard segmentation network.

Similarly, another study proposed Poly-GAN (2023)[11] to post-process OpenStreetMap building
footprints, adjusting vertices via a GAN to better align and orthogonalize them . These GAN-based
approaches can be seen as learned versions of the old heuristic regularization rather than applying a
Hough transform, they apply a discriminator that has learned what a “correct” building outline looks
like and thus encourages the output to conform to those learned patterns.

https://github.com/yeshwanth95/Pix2Poly?tab=readme-ov-file


Figure 18:  Schematic diagram of the polygon regularization process linking the Poly-GAN model training phase to the
(predicted) building regularization phase [11]

Methodology



Figure 19:  Methodology Utilized For the Comparison

In this study , Literature review was done by reading papers , going through their pros and cons and
trying out the methhodologies discussed on the paper . For visual analysis two of the methods were
picked up and only traditional methods were analyzed as part of the �rst initial research . In this
comparision, the goal was to extract building footprints shape geometry from aerial imagery rather
than evaluate the performance of the deep learning model. The work�ow began by gathering high-
resolution aerial images from OpenAerialMap, covering three di�erent locations. These images were
then divided into smaller tiles of 256×256 pixels to make them suitable for processing. A lightweight
building segmentation model from the RAMP (Replicable AI for Microplanning), running on
TensorFlow Lite, was used to predict the locations of buildings in these tiles. The output of the model
was binary masks, where buildings were represented by white (1) pixels and background by black (0).
These masks were then converted into vector outlines using the rasterio library. & this is where
multiple algorithm was applied generate the building shapes,& �nally building footprints were
exported in GeoJSON format for visualization. Later on proposal is to do comparitive study with
modern deep learning frameworks on the same area.

Discussion

While doing the literation review between traditional and deep learning methods following things
were observed . This table is generated solely based on the interpretation from di�erent papers and
blogs cited on the references.

Comparison: Traditional vs. Deep Learning Methods

Accuracy and Performance



Aspect Traditional Methods Deep Learning Methods

Detection
Accuracy

Moderate; struggles with small/faint
buildings

High; CNNs and transformers achieve state-of-the-art IoU and
recall

Processing
Speed

Very fast (per building) on CPU Slower per image but GPU-accelerated; parallelization possible

Scalability Needs tuning for new regions Scales to large areas

Example Hough Transform, DP simpli�cation PolyWorld, Pix2Poly, Frame Field Learning

Flexibility and Generalization

Aspect Traditional Methods Deep Learning Methods

Adaptabilit
y

Manual reprogramming required Retrainable and �ne-tunable on new data

Shape
Handling

Biased to rectilinear structures Learns to detect irregular, curved, or complex forms

Data
Sensitivity

Edge-based; poor in low contrast Learns semantic cues (shadows, context)

Example Thresholding, edge detectors CNNs, Transformers trained on diverse imagery

Cartographic Quality

Aspect Traditional Methods Deep Learning Methods

Output
Regularity

Hard constraints (e.g. 90° angles) Learned regularity (polygon loss, angle constraints, GANs)

Visual
Quality

Very clean, stylized Near �ner details as compared from hand-crafted results

Limitations May snap overly aggressively May allow some deviation; occasional noise

Example Regularize Footprint tool PolyWorld, Pix2Poly with angle loss, GAN re�nement

GIS Integration

Aspect Traditional Methods Deep Learning Methods

Output
Format

Vector-ready (Polygons)
Historically : Raster masks , Now outputs GeoJSON/Shape�les
directly

Work�ow
Fit

Compatible with legacy GIS Integrated in QGIS, ArcGIS Pro via plugins, OpenCV

Post-
Processing

Quite sophisticated Often Minimal with latest pipelines

Example Manual digitization, vector tools Microsoft’s global footprint pipeline, Google Open Buildings

Quality Control

Aspect Traditional Methods Deep Learning Methods



Aspect Traditional Methods Deep Learning Methods

Failure
Visibility

Obvious errors, easy to �ag May generate plausible but wrong results

Correction Manual re-runs or inspection Hybrid review: DL + regularization + optional human validation

Robustnes
s

Deterministic but brittle , Easy to
explain

Robust to noise, generalizes well across geographies, Hard to
explain

Quality is really subjective and it is hard to do qualitative analysis for this kind of project ! For sample
comparison I picked few areas and compare two of the traditional methods. I picked three di�erent
areas, On algorithms : one is douglas pickler theorem another one is right angle optimization theorem
which is de�ned here Both traditional approach to see how they perform practically on following
datasets.

Figure 20:  Example test areas

https://github.com/kshitijrajsharma/geoml-toolkits/blob/master/src/geomltoolkits/regularizer/orthogonalize.py


Figure 21:  Cameroon



Figure 22:  Bangladesh

Figure 23:  Malawi

Right-angle optimization methods have shown slight superiority in certain contexts; however, the
Douglas-Peucker algorithm remains widely relevant and is employed in numerous projects to date.
The primary discussion point is whether an additional deep learning model is necessary for improved
shape accuracy, or if feature extraction alone is su�cient. This determination is contingent upon the
speci�c use case and the complexity of the algorithm employed. There is no straightforward solution
to this problem.

The measurement of quality in this context is subjective and challenging. For some applications, a
well-de�ned right-angled shape is considered optimal, while others prioritize a closer match to the
background shape. The determination of cartographic quality is further complicated by the need for
feature alignment. Even if a feature is accurately traced according to the imagery, its placement may
not be contextually appropriate. For instance, a building near a road or a tall structure might not be
mapped according to its rooftop; it could be slightly shifted or deliberately repositioned to better align
with other features.

Conclusion

This review traces the evolution of building footprint regularization over the past three decades, from
simple geometric rules to complex deep learning models. However, tracking this technical progress
has revealed a more profound issue: the criteria for a “good” building footprint remain elusive. Even in
OpenStreetmap itself people have di�erent opinion which is good quality mapping and bad quality
mapping interms of cartographic accuracy. A comparative analysis of di�erent methods across three



areas yielded more questions than answers. Should the priority be perfect right angles, accurate
representation of real building shapes, or aesthetic appeal on a map? Traditional methods excel at
producing clean geometric shapes, while deep learning models are better at detecting complex
buildings & slightly going towards understanding the context specially with the transformer based
models. Deep learning might potentially solve the problem by applying di�erent algorithms or cases
per building rather than applying to the whole scene ; they can work on objects & rotating them to �t
the context. However, neither approach fully addresses what humans actually want from these tools.
While deep learning shows promise, it is not yet mature enough to provide a de�nitive solution.

It is important to acknowledge the limitations of this study. The computational resources required by
di�erent methods, training times, and runtime speeds were not evaluated. Comparitive analysis with
deep learning model based approches can be taken forward on future research. Additionally, large-
scale accuracy tests on standard datasets were not conducted. These omissions are not accidental;
comprehensive testing would require signi�cant computational resources and may not provide
insights into what matters most in real-world applications. Current metrics of success, such as
intersection over union scores used by some of the methods, overlook critical factors like whether a
building polygon appears correct to human eyes. The �eld is still trying to justify with how to
meaningfully measure cartographic quality.

While the �eld has made signi�cant strides in automatically detecting buildings and handling complex
shapes, this does not necessarily translate to better outputs for practical mapping work. For
practitioners involved in projects like OpenStreetMap, the choice of method often depends on
available tools, familiarity with the technology, and speci�c project goals. Building footprint
regularization is as much about human judgment and aesthetics as it is about algorithms. Rather than
seeking a one-size-�ts-all solution, the focus should be on understanding the strengths and limitations
of di�erent approaches and providing users with the tools to make informed choices tailored to their
speci�c needs.
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